If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x-144=0
a = 3; b = -18; c = -144;
Δ = b2-4ac
Δ = -182-4·3·(-144)
Δ = 2052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2052}=\sqrt{36*57}=\sqrt{36}*\sqrt{57}=6\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{57}}{2*3}=\frac{18-6\sqrt{57}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{57}}{2*3}=\frac{18+6\sqrt{57}}{6} $
| 3(52x+7)=6x. | | 2x^2-5x+4=3x+8 | | -6(2-2b)=-84 | | w/2+10=17 | | 6(x+2)-x=4(x+40+7 | | 4-2/3x=2/5 | | 7(4x-8)=-84 | | 12t-24=12t-4 | | 8x(3x+6)=24x-10 | | 14(7c-2)=3c-4 | | 16-x=4x+6 | | 1/3+4/5=c | | 22-3x=3x+28 | | 22n+12n+20-n=-2 | | 4(x+)=76 | | 2m-1=6 | | 7+4v=-17 | | 3-2z=15 | | 2m+1=m-6 | | n-18=-34 | | 185=129-u | | 20x^-2+x^-1+1=0 | | -7(u-4)=5u-44 | | 3x+6/2=2x-1 | | 109+8x+2+8x+11=180 | | 11m-23=12m=5 | | 68-x=242 | | 4w=8/3 | | 15x/4=-15 | | -25=4u-5 | | 18p=p=11-3p | | 2m-1=m-6 |